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Serial: Quanta of molecules

In this part, we will finally look at how to use quantum physics for calculations involving
molecules.

Nothing is that simple

As you may have already guessed, and the end of the second issue of this series may have told
you, doing a calculation for a whole molecule is not that simple. During the process of finding
the solution, we have to make a number of simplifications. We start with the decision of which
physics of the problem we want to use, that is, what physical effects we take into account.
Firstly, we usually do not consider the effects of special relativity, for example, that a moving
electron is heavier. The second, more fundamental assumption, is that atomic nuclei are many
times heavier than electrons, and thus will move on much slower timescales. As a result, the
nuclei appear almost stationary to the electrons, and we can solve for their motion (their wave
function) with the nuclei fixed, and possibly deal with the motion of the nuclei later. For the
same reason we can also neglect the quantum nature of nuclei and consider them as point
charges.

As a result, we solve the Schrodinger equation only for a set of electrons in electrostatic field
of the fixed nuclei. We of course do not want to neglect the electrostatic interaction between
electrons, so the Hamiltonian will contain the appropriate elements. However, if you recollect
the end of the second part again, even this is not easy. We indicated there that we have no
chance to find the exact solution of the Schrodinger equation when we have more than a few
electrons. And let’s remember that we are often interested in molecules that have tens of atoms
and a few hundred electrons.

A solution to this problem is easy, just recollect the previous issue of the series. We intro-
duced the basis functions. If we want to do calculations for molecules, we have many optimized
sets available. Most of these are functions that resemble atomic orbitals as we know them, only
they are defined in a way that makes them easier to compute numerically. During the calcu-
lation, we use one set of functions for each atom with parameters specific for that atom and
centered around the position of that atom. Usually, we only need a few dozen of basis functions
for each atom.

It could seem we are done — we have managed to reduce the problem to a few hundred or
a few thousand basis functions, even though before introducing the basis we had more lattice
points than there are particles in the universe! However, the opposite is true. We need to
understand that we do not have a one-particle problem. That is, the main “building” blocks
are not the orbitals themselves, but the states where we have electrons stacked in some way in
a given set of orbitals. Each such state will then have its own unknown coefficient. How many
such states are there? We can easily calculate that. We have N basis functions, so N different
orbitals into which we can put electrons. In each orbital there can be an electron with spin
up, down, both, or neither. That means, that we have 2N boxes into which we place electrons
one by one. The number of possibilities is then, if the number of electrons in k, given by the
binomial coefficient (Qév ) This is still an astronomical number for most systems; for example,
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if we have 40 electrons and 100 orbitals, the number of possibilities is on the order of 102
And this still corresponds to a fairly small molecule, such as benzene. Fortunately, there is an
approximation that can get us out of this mess.

The Hartree-Fock approximation

How solve this? The problem is that we are trying to solve the problem for all electrons at
once. We need to try to divide the problem so that we have an independent equation for each
electron. But at the same time we do not want to neglect the repulsion between the electrons
as we have been doing until now. The first step is to abandon the idea of having different
configurations in the wave function, that is, that all the different ways in which the orbitals can
be occupied contribute to the wave function. Instead, we use the fact that the wave function
of most molecules can be described by a single configuration, such that we sequentially fill the
orbitals with the lowest energy from the bottom up with two electrons. The whole problem
then simplifies to finding the correct shape of these occupied orbitals. But how do we find
these orbitals? Let’s imagine someone told us what all occupied orbitals look like except for
one. Then we could take the wave function of all these orbitals and produce from them the
probability density which we introduced in the second part of the series. However, if we multiply
this probability density by the charge of an electron, we get the charge density!

Thus, we know both the electrostatic potential of the nuclei and the charge distribution of
the other electrons. Now nothing can stop us from formulating the Schrédinger equation for
the last orbital using the potential given by this charge distribution. We can solve it easily, as
we only have a few thousand unknowns at a time, which is a piece of cake for a computer. (We
are looking for only one unknown coefficient for each basis function.) The result is the wave
function of the last orbital and the energy of the electron in that orbital.

And how do we deal with the fact that we do not know the wave functions of the individual
occupied orbitals? In the beginning, we make some sort of guess. We then use these orbitals to
construct the hamiltonians for the individual electrons. We solve these equations and obtain
a new set of orbitals that are more accurate than our original estimate. Then we repeat the
whole process with the new orbitals, continuing until we get the same orbitals we used to make
the hamiltonian, i.e. the orbitals converge.

Why is the result of this approximation not exact? The catch is that the electrostatic
potential from other electrons in the Schrédinger equation for the orbital is independent of the
position of this electron. In the real world, we can certainly imagine that depending on where
this electron is located, it will deform other orbitals due to electrostatic repulsion. Unfortunately,
we cannot describe this effect by solving an equation for each single electron separately.

The total error of this approximation is around 1% in the resulting energy. Unfortunately,
for describing chemical processes we usually need significantly higher accuracy. As a result
a large part of the development of methods for quantum chemical calculations focuses on how
to overcome this limitation without significantly increasing the computational complexity. But
why is one percent such a large error?

We have to realize that the total energy of a molecule which we calculate is the energy that
we would need to “dissassemble” the molecule into individual electrons and nuclei and to move
them to infinite distance form each other. This energy is enormous compared to the energies
of chemical reactions. In chemical reactions, only the orbitals in the valence shell rearrange.
Therefore, when we calculate the energy of a reaction, we have to calculate the total energy of
the products and subtract the total energy of the reactants. If you have experience with how
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deviations change under mathematical operations, you know that the error in the interaction
energy will be enormous. It can be even higher than the energy of the reaction itself. That
is why we try to compensate for the error in the energy of reactants and products as well as
possible — we have to use the same method and basis set for both calculations.

And what about the geometry of the molecule?

As we already mentioned in the beginning, the positions of the nuclei are fixed during the entire
calculation and we need to input their coordinates at the beginning of the program. But where
do we get these coordinates? While we can sometimes obtain them from some experiment,
such as X-ray diffraction, in most cases we do not know them in advance. What do we do
then? We only need to know what we want the molecule to look like, and from that we can
determine its approximate geometry. For that we calculate the energy. Then, we slightly move
the nuclei in a certain direction and see if the energy decreases or not. Gradually, we can arrive
at geometry with the lowest energy. An advantage is that we do not have to “blindly” look for
these movements of nuclei, but we can directly calculate the energy gradient from the wave
function, i.e. we can see the direction in which the energy decreases the fastest.

Thanks to this, we can even find structures of molecules and complexes that are almost
impossible to observe experimentally, such as short-lived intermediates of chemical reactions.

And what does it look like in practice?

Now, we will look at how the calculations look like in practice. We will use the program Psi4,
which is a free software. (https://psicode.org/) Let’s try to illustrate the whole process with
a molecule of water. We need to prepare an input file where we tell the program what we want
it to do.

First, we need to describe the molecule. In the input file we enter the geometry of a molecule
of water, this is done by

molecule{

01
0 -1.818556 -0.320567 1.225399
H -0.898992 -0.062457 1.771117
H -2.278145 -1.054597 1.903623

}

Primarily, we should be interested in the first line 0 1. The first number indicates the charge
of the molecule. Therefore, the number 0 says, that we have a neutral molecule. In the case of
a cation, we would have a positive number, for an anion we would have a negative number. The
second number indicates a spin multiplicity. This is a somewhat complicated concept, which
describes the total number of unpaired electrons, i.e. how many more electrons have the spin
up than down. For historical reasons, it is designated by a number one higher than the number
of unpaired electrons. If we have all electrons paired, it is a singlet state, and we denote it by 1.
The state with two unpaired electrons is a triplet (3). Radicals can also have one unpaired
electron, then we have a doublet. Anyway, the vast majority of molecules are singlet in the
ground state, so the first line is rarely something other than 0 1. A notorious exception is the
oxygen molecule O, which is a triplet. The coordinates of the nuclei given in angstroms follow.
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We set the basis with the line set basis cc-pvdz. The abbreviation cc-pvdz denotes one
of the commonly used basis. Other possible options are, increasing in size (i.e. with increased
precision and also computational complexity), sto-3g, cc-pvdz, cc-pvtz, cc-pvqz.

Now that we have this defined, we can add the following line at the end optimize ("HF"),
which starts the geometric optimization. "HF" says, that we want to optimize by the Hartree-
Fock method. If we already had the correct coordinates of nuclei and wanted only to calculate
the energy, we would need only to use energy ("HF").

If we put all these lines together, we get the whole input for the program:

set basis cc-pvdz

molecule {

01

0 -1.818556 -0.320567 1.225399
H -0.898992 -0.062457 1.771117
H -2.278145 -1.054597 1.903623
}

optimize ("HF")

which we can save as a file called, for example, input.inp. The calculation can be started in
the command line using psi4 input.inp.

After running the program, we will find in the folder the file input.inp.dat, possibly
input.out or similar, which contains all information from the program run. If all went well,
we will find the optimized coordinates of individual atoms and the total energy of the whole
molecule at the end of the file. In our case, we get the following at the end of the file:

==> Convergence Check <==
Measures of convergence in internal coordinates in au.

Criteria marked as inactive (o), active & met (*), and active & unmet ( ).

Step Total Energy Delta E Max Force RMS Force Max Disp RMS Disp

Convergence Criteria 1.00e-06 * 3.00e-04 * o 1.20e-03 * o

7 -76.02703278 -6.09e-06 3.51e-05 * 2.65e-05 o 1.79e-04 * 1.05e-04 o

Next Geometry in Ang
Fragment 1 (Ang)

0 0.0057046143 -0.0645290211 0.0000000000
H -0.7911519198 0.4458305979 0.0000000000
H 0.7006716423 0.5777071999 0.0000000000

Final optimized geometry and variables:
Molecular point group: cs
Full point group: Cs

Geometry (in Angstrom), charge = 0, multiplicity = 1:

0 0.005700842385 -0.064489709337 0.000000000000
H -0.791211319490 0.445805409758 0.000000000000



FYKOS Serial XXXVI.IV Quanta of molecules

H 0.700734813858 0.577693076293 0.000000000000

Psi4 stopped on: Wednesday, 04 January 2023 05:36PM
Psi4 wall time for execution: 0:00:01.40

*x*% Psi4 exiting successfully. Buy a developer a beer!

From the column marked Total energy in the table, where we find the number -76.02703278,
we find that the total energy of the molecule is —76.027 Ha. The units Ha denote hartree,
and one hartree corresponds to 27.21 eV, so about 2625.5kJ-mol~! or 4.36 - 1078 J. If we had
an optimized geometry and calculated only the energy, we would only need to look for the
line Total Energy = -76.02703278. Just before the end of the file is the resulting optimized
geometry of the molecule.

A few remarks at the end

Both the search for the right orbitals and the geometric optimization are iterative procedures.
Thus it can happen, and quite often does, that the iterations do not converge, so even if we’d
let the program run infinitely long, we would not get the correct result. For this reason, the
program is set to throw an error and end if it does not converge after a certain number of
iterations. In such case, you have to try to run it again with a slightly different input geometry,
or even different program settings, but that already requires an experienced quantum chemist.

At the same time, the Hartree-Fock method, in its original formulation, assumes a molecule
that has all the orbitals of the molecule either occupied by two electrons or empty. This au-
tomatically implies that the molecule is in a singlet state. If we want to calculate a molecule
with a different spin (for example, the triplet of the aforementioned oxygen), we need to lift
this requirement with the line set reference rohf.

When preparing the geometry of more complicated molecules, it is often useful to use graph-
ical programs, where we can “draw” the molecule. A good program in this respect is for example
Avogadro.

And how to install and use Psi4 on Windows?

You can download the installation program for Windows directly from the PsiCode websiteﬂ.
During the installation, you can check the option “Add Psi4dconda to my PATH environment
variable”, then it is possible to use the Windows command line directly to run it. In either case,
after the installation, an “Anaconda prompt” program will appear in the Start menu, which
you can use in exactly the same way. If we open the Anaconda prompt, we can type “psi4” to
verify that everything works. The program should start and scold us for not having an input
file.

The next step is, therefore, to take the input file (you can use, for example, the one from
this text), and pass it to the program as a parameter. The only thing to watch out for is what
folder we are in at the command line and where the input file is stored. It is either necessary to
pass the full path to the file (e.g.: psi4 Documents\psi4\input.inp, if we create a folder for
inputs named psi4 in Documents). The second option is to use the command cd, which allows
us to move between folders. (So we would use the command cd Documents, then cd psi4, and

thttp://vergil.chemistry.gatech.edu/psicode-download/Psi4conda-1.7-py38-Windows-x86_64.exe
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finally run the program using psi4 input.inp) If we wanted to move to the parent folder, there
is the command cd .. for that. And the command dir lists the contents of the current folder.
The result of running the program is in this case the file input.inp.out, which we can open
using Notepad.

This concludes this part of the series, and next time we will follow up by showing what
happens when we allow the nuclei to move after all.
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